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Abstract

Similarly to an acoustic wave, an internal gravity wave (IGW) can cause the drift of a dispersed
component in a two-component system, e.g. in a hydrosol or an aerosol. The IGW-caused particle drift
may play a signi®cance role in many natural processes occurring in very large water reservoirs or air
volumes and thus is of interest for atmospheric and oceanic research. The analytical and numerical
calculations of the IGW-caused particle drift motion were performed in this study for the following two
sets of conditions: (i) propagating IGW in a horizontal in®nite waveguide and (ii) standing IGW in a
rectangular resonator. It was shown that particles concentrate in certain areas of an IGW ®eld as a
result of their migration. When IGW is propagating in an in®nite waveguide, the particle drift causes
the vertical strati®cation and horizontal unidirectional motion. The particle size a�ects the shape of the
particle trajectories and the vertical component of the drift velocity in an in®nite waveguide. In contrast,
the shape of trajectories in the IGW rectangular resonator is not a�ected by the particle size and IGW
intensity. The IGW-caused particle drift was shown to result in puri®cation of a two-component system
or in its ``structurization'' (the formation of puri®ed areas of the ¯uid alternating with the areas loaded
with particles). These e�ects were found to be low energy consuming: 010 J/m3 of liquid. However, the
particle migration in the in®nite waveguide and rectangular resonator is a very slow process, and the
time needed for an e�cient puri®cation of a ¯uid increases quickly with the decrease of particle size.
The particle coagulation is expected to signi®cantly accelerate the ¯uid puri®cation. Another way to
reduce this characteristic time is proposed through utilizing the horizontal component of the particle
drift in the semi-in®nite IGW waveguide. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The particle motion in a ¯uid caused by an acoustic ®eld includes a wave-generated
oscillation and a slow drift of the particles. Depending on the type of the acoustic wave,
particles are concentrated in certain regions of the acoustic ®eld or/and exhibit
unidirectional motion (Bergman, 1957; Mednikov, 1963). For example, in the case of a
one-dimensional standing acoustic wave, the drift favors the strati®cation of multiphase
media so that the particles move to the planes where oscillation amplitude reaches its
maximum or minimum value (King, 1934). Standing acoustic waves have been extensively
used for precipitation of particles from highly-concentrated aerosol systems because they
promote intensive particle coagulation. In the case of a propagating (traveling) acoustic
wave, the unidirectional particle drift emerges along with the transversal drift strati®cation.
This allows the particle extraction from liquids and gases regardless of their coagulation
rate and thus makes the extraction e�ciency essentially independent on the particle
concentration in the ¯uid. The acoustic drift has been studied by King (1934) for the
standing and propagating waves. The King's theory can be applied to su�ciently large
particles (the particle Reynolds number Rep � 1), when the so-called radiation pressure
force F is determined primarily by inertial properties of the ¯uid. In this case, F is
proportional to dVrel=dt, where Vrel is the particle velocity with respect to the ¯uid. The
acoustic drift of relatively small particles �Rep � 1), for which the ¯uid viscosity e�ect is
essential and F is proportional to Vrel, has been studied by Westervelt (1950), Duhin
(1960), Vainstein et al. (1992) and Redcoborody (1995). It has been shown that the
particles migrate to the nodes of the one-dimensional standing acoustic wave (Duhin,
1960; Vainstein et al., 1992), while the propagating wave causes homogeneous particle
migration in the wake of the wave (Westervelt, 1950; Redcoborody, 1995).
The internal gravity wave (IGW) that has been observed in the earth and solar atmospheres

(Gossard and Hooke, 1975; Priest, 1984) and in the ocean (Lighthill, 1978) is characterized by
much lower frequency (e.g., about 10ÿ2 Hz, Lighthill, 1978). While the restoring force for an
acoustic wave is caused by the pressure gradient, the IGW is associated with the buoyancy
force (i.e., the di�erence between the Arhimedus and the gravity forces). The word ``internal''
is used to di�erentiate the IGW from a surface gravity wave (SGW) which propagates along
the interface surface between two ¯uids (Landau and Lifshitz, 1986). The IGW may a�ect a
two-component system by causing the particle drift motion, similarly to the acoustic wave. As
IGW has signi®cantly greater wavelength and much smaller group velocity compared with the
acoustic wave, the particle extraction from liquids and gases due to the gravity wave drift is
expected to be e�cient and low energy consuming. The extremely low frequency of IGW
makes the limitation of Rep � 1 justi®ed for various applications of the particle drift e�ect in
suspensions and aerosols. In this situation the ¯uid viscosity e�ect is predominant while the
particle inertia e�ect is negligibly small. Although IGW is generally associated with very large
¯uid volumes (in the order of 100 m or km), it may be excited in a waveguide or a resonator in
a characteristic dimensions as low as several meters (Stevenson, 1973).
In this study, we investigated the drift of spherical particles in a liquid caused by the two-

dimensional IGW. The drift characteristics were determined analytically and numerically for
the two-dimensional horizontal in®nite waveguide (propagating wave) and the rectangular
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resonator (standing wave). It was shown that the particles migrate and concentrate in certain
areas of the IGW ®eld which may lead to the puri®cation of suspensions due to structurization
of these two-component systems. This e�ect appeared to be low energy consuming, but the
migration velocity in the resonator and its vertical component in the in®nite waveguide were
found to be very low. Thus, the ¯uid puri®cation process (associated with its structurization) is
very slow, especially for relatively small particles because the time needed for an e�cient
puri®cation increases quickly with the decrease of particle size. When propagating in the
in®nite waveguide, IGW causes vertical strati®cation which is accompanied by the horizontal
unidirectional motion of particles with considerable rate. This rate was shown not to be
a�ected by the particle size. The method of accelerating the IGW-caused structurization is
introduced and evaluated in this study through utilizing the horizontal component of the
particle drift in the semi-in®nite waveguide.

2. Basic equations

2.1. Spherical particle under viscous force

The motion of an essentially inertialess particle �Rep � 1� in a continuous medium is
governed by the Stokes law (Batchelor, 1967)

F � 6pnrRpVrel: �1�
where n and r are the ¯uid kinematic viscosity and density, respectively, and Rp is the particle
radius. Since it is assumed that the particle density rp is approximately equal to the density r
of the liquid, the buoyancy force (which is proportional to R3

p� becomes negligibly small. If the
size of a spherical particle is signi®cantly smaller than the characteristic space scale, the particle
motion equation is

mpÈr � Kp

�
V�r, t� ÿ Çr

�
, �2�

where Kp � 6pnrRp; V�r, t� is the liquid velocity at point r, where the particle is located, and
mp is the particle mass. This model is applicable when the particles suspended into a liquid
have approximately the same density as this liquid, i.e. the buoyancy force is neglected. In two-
dimensional case the components of Eq. (2) are

tp �x� _x � Vx�x, z, t�; �3�

tp �z� _z � Vz�x, z, t�, �4�
where

tp � 2

9

rpR
2
p

nr
: �5�
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2.2. Internal gravity wave

To describe the wave-like two-dimensional motion in the ideal ¯uid exposed to the uniform
gravity ®eld, the standard hydrodynamic equations (Lighthill, 1978) are utilized as follows:

r0
@u

@t
� ÿ@p

0

@x
; �6�

r0
@w

@t
� ÿ@p

0

@z
ÿ gr 0; �7�

@r 0

@t
� r0

�
@u

@x
� @w
@z

�
� w

dr0
dz
� 0; �8�

@p 0

@t
� w

dp0
dz
� c20

�
@r 0

@t
� w

dr0
dz

�
�9�

These equations are linearized with respect to initial state which is described as

V0 � 0; p0 � p0�z�; r0 � r0�z�; rp0 � r0g; T0 � const; p 0 � pÿ p0; r 0 � rÿ r0: �10�

Here the subscript 0 represents the liquid undisturbed by the wave; u and w are horizontal and
vertical components of the velocity V, respectively; x and z are the axes directed horizontally
and vertically (upward), respectively; c0 is the sound speed.
As the parameters of Eqs. (6)±(9) are not dependent on the time t and on the x-coordinate,

these di�erential equations can be simpli®ed to a system of algebraic equations. After solving
this system with respect to w, the inverse Fourie transformation leads to the following single
equation:

@ 2

@t2

�
Dwÿ 1

H0

@w

@z

�
�N 2 @

2

@x 2
wÿ 1

c20

@4w

@x4
� 0 �11�

Here

H0 � ÿ
�
1

r0

dr0
dz

�ÿ1
; �12�

N is the so-called Brunt-VaÈ isaÈ laÈ frequency (Lighthill, 1978):

N �
"
ÿ g

r0

dr0
dz
ÿ g2

c20

#1=2

: �13�

Similarly,
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@ 2u

@x 2
ÿ 1

gH0

@ 2u

@t2
ÿ 1

g

@3w

@x@t2
ÿ 1

H0

@w

@x
� 1

g

@3u

@z@t2
� @ 2w

@x@z
� 0: �14�

The solution of Eqs. (11) and (14) for the low-frequency small scale IGW can be expressed in
the following form

w�x, z, t� � ŵ�x, z�eÿiot �15�
where

oRN, �16�

lx, lz � H0, �17�
lx and lz are the horizontal and vertical wavelengths, respectively. Due to the conditions
expressed in Eqs. (16) and (17), the second and the third terms of Eq. (11) are negligibly small.
Thus, in the case of a low-frequency small-scale IGW, Eq. (11) is simpli®ed as

@ 2

@t2
Dw�N 2 @

2

@x 2
w � 0: �18�

Similarly,

@u

@x
� ÿ@w

@z
: �19�

3. IGW-caused particle drift in horizontal in®nite waveguide

3.1. Analytical model

The two-dimensional IGW is considered in a horizontal waveguide of the in®nite length and
limited height. Assuming that the liquid ®lls a waveguide with horizontal rigid boundaries, the
boundary conditions for w�x, z, t� are

wjz�0 � wjz�h � 0, �20�
where h is the waveguide height. After substituting Eq. (15) into Eq. (18), we have

ŵzz �
�
1ÿ N 2

o2

�
ŵxx � 0: �21�

From Eqs. (20), (21) and (15), (19), respectively, the vertical wn and horizontal un components
of the liquid velocity in the n-th mode can be obtained as

wn�x, z, t� � ÿCk sin

�
pn
h
z

�
sin�kxÿ ont� �22�
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and

un�x, z, t� � ÿCpn
h

cos

�
pn
h
z

�
cos�kxÿ ont� �23�

Here k is a horizontal wavenumber and frequency on is determined by

o2
n � N 2 k2

k2 � p2n2=h2
; �24�

n � 1, 2, 3, . . . ; value C is an arbitrary constant. Eqs. (22) and (23) show that the IGW in a
horizontal waveguide of the in®nite length and limited height represents the composition of the
transversal standing wave and longitudinal propagating wave.
Substituting (22) and (23) in (4) and (3), respectively, the nonlinear equations of the particle

motion in the IGW ®eld are obtained in a non-dimensional form as

aZ 00 � Z 0 � ÿb sin Z sin�xÿ y� �25�
and

ax 00 � x 0 � ÿb cos Z cos�xÿ y�: �26�
Here

x � kx, Z � pn
h
z, y � ont �27�

and

a � ontp, b � Ckpn
hon

�28�

are non-dimensional variables �x, Z, and y� and parameters �a and b); tp is determined by Eq.
(5). In the case of the linear approximation of the IGW, i.e.,b� 1, the solutions of the set of
nonlinear non-autonomic Eqs. (25) and (26) can be obtained with the su�cient accuracy in the
following form (Kapitza, 1951)

x�y� � x0�y� � x1�y�; Z�y� � Z0�y� � Z1�y�, �29�
where x1and Z1 are small perturbations oscillating with the period 2p whereas x0 and Z0 are
slow drift components of the particle motion, jx1�y�j �� jx0�y�j, jZ1�y�j �� jZ0�y�j: The
functions x1�y� and Z1�y� can be obtained as solutions of Eqs. (26) and (25), respectively. To
derive the equations for x0�y� and Z0�y� the right-hand sides of (25) and (26) are expanded in
powers of x1 and Z1 taking into account the ®rst order terms only:

aZ 000 � Z 00 � aZ 001 � Z 01 � ÿb
ÿ
sin Z0 � Z1 cos Z0

��
sin�x0 ÿ y� � x1 cos�x0 ÿ y�� �25a�

and

ax 000 � x 00 � ax 001 � x 01 � ÿb
ÿ
cos Z0 ÿ Z1 sin Z0

��
cos�x0 ÿ y� ÿ x1 sin�x0 ÿ y�� �26a�
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The two terms of each equation, representing an oscillation and a smooth variation,
respectively, can be mutually cancelled.
Separating the oscillating terms, we obtain that

aZ 001 � Z 01 � ÿb sin Z0 sin�x0 ÿ y� �25b�

ax 001 � x 01 � ÿb cos Z0 cos�x0 ÿ y� �26b�
When integrating, Z0 are x0 treated as constants. The right-hand sides of Eqs. (25b) and (26b)
are modi®ed utilizing the following expressions: 2i sin�x0 ÿ y� � exp�i�x0 ÿ y�� ÿ exp�ÿi�x0 ÿ y��
and 2 cos�x0 ÿ y� � exp�i�x0 ÿ y�� � exp�ÿi�x0 ÿ y��, where i � �������ÿ1p

: Both equations are further
modi®ed using exp�y=a� as a multiplying factor. Thus,

Z1�y� � C1 � C2 exp� ÿ y=a� ÿ
�
b sin Z0 cos�x0 ÿ y� ÿ ab sin Z0 sin�x0 ÿ y��

�1� a2� �25c�

and

x1�y� � C3 � C4 exp� ÿ y=a� �
�
b cos Z0 sin�x0 ÿ y� � ab cos Z0 cos�x0 ÿ y��

�1� a2� �26c�

where C1, C2, C3, and C4 are constant. If y� a, C2 exp�ÿy=a� and C4 exp�ÿy=a� are both
neglected.
The above expressions of Z1�y� and x1�y� are used in Eqs. (25a) and (26a) to obtain the

smooth variation terms. The equations are then averaged over 2p interval of y �Z0�y� and x0�y�
are treated as constants). This leads to the following equations of the particle drift in the ®eld
of the IGW:

aZ 000 � Z 00 � ÿ
ab2

2�1� a2�sin
ÿ
2Z0

� �30�

and

ax 000 � x 00 �
b2

2�1� a2�cos
ÿ
2Z0

�
: �31�

It is evident that for b� 1 the characteristic time of the particle drift is much greater than the
period of oscillations, i.e. the non-dimensional time scale t� of the functions x0�y� and Z0�y� is
su�ciently large:

t� � 2p: �32�
If particles up to 1 mm in size are dispersed in a water suspension �tpR10ÿ1 s) and the IGW
frequency is on0N0�10ÿ3±10ÿ1� sÿ1 (see Lighthill, 1978), then

a � ontp � 1: �33�
Conditions (32) and (33) allow us to neglect the ®rst terms of the left-hand sides of Eqs. (30)
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and (31) and due to this fact the particle drift equations are reduced to

Z 00 � ÿ
ab2

2�1� a2�sin
ÿ
2Z0

� �34�

and

x 00 �
b2

2�1� a2�cos
ÿ
2Z0

�
: �35�

Eq. (34) describes the vertical drift motion, while Eq. (35) describes the combination of the
vertical and horizontal ones.
The expression for the vertical drift velocity (Eq. (34)) has the following equilibrium points:

Z0m �
p
2
m, m � 0, 1, . . . , 2n �36�

For the even m-values, Eq. (36) represents attractive planes while for the odd values it
represents repelling planes. The general solution of Eq. (34) can be found in the following
form:

cos 2Z0 �
1ÿ C0 exp� ÿ 2Ay�
1� C0 exp� ÿ 2Ay� , �37�

where

A � ab2

1� a2
; C0 � 1ÿ cos 2Z0�0�

1� cos 2Z0�0�
�38�

In particular, if 0 < Z0�0� < p=2, then

Z0�y� �
1

2
cosÿ1

"
1ÿ C0 exp� ÿ 2Ay�
1� C0 exp� ÿ 2Ay�

#
�39�

At y4 �1 the particles migrate to the bottom of the waveguide: Z0�y�40:
The vertical particle drift in the horizontal waveguide results in the particle strati®cation.

The characteristic non-dimensional time of the strati®cation (the time interval needed for the
particle to reach the vicinity of the nearest attractive plane), can be estimated using Eq. (38)
that at a� 1 reads as

t�0
1

A
0 1

ab2
: �40�

Hence, the particles concentrate near the attractive planes Z0 � ps �s � 0, 1, . . . ,n� with the
mean velocity that is proportional to the square of the particle size (see Eqs. (5) and (28)) and
to the IGW intensity (see Eqs. (22) and (28)).
Eq. (35) for the horizontal drift motion can be integrated if the vertical drift component is

known (see Eqs. (37) and (39)). If the particle has reached the attractive plane due to its
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vertical drift, then the solution of Eq. (34) reads

Z0�y� � ps, s � 0, 1, . . . , n, �41�
and the solution of Eq. (35) reads

x0�y� � C1 � b2

2�1� a2�y, �42�

where C1 is an arbitrary constant. Eq. (42) represents the unidirectional uniform particle drift
in the horizontal direction with the following non-dimensional velocity:

L � dx0
dy
� b2

2�1� a2� : �43�

It is concluded that if a� 1 (which represents a typical situation of the dispersed system
exposed to the IGW, see Eq. (33)), the horizontal drift velocity does not essentially depend on
the particle size and is determined only by the parameters of the waveguide and the IGW (see
Eq. (28)).
The particle drift trajectories Z0�x0� can be found when Eq. (34) is divided by Eq. (35) so

that dZ0=dx0 � ÿa�tan�2Z0��: The general solution of this equation is

sin
�
2Z0�x0�

� � �sin
ÿ
2Z0�0�

��
exp� ÿ 2ax0�, �44�

where Z0�0� � Z0jx0�0: In particular, when 0 < Z0�0� < p=4, the particle trajectory is described
by the following equation

Z0�x0� �
1

2
sinÿ1

�
sin
ÿ
2Z0�0�

��
exp� ÿ 2ax0�: �45�

The trajectories of particles initially located at points (0; p=4� and (0; 3p=4� in the IGW-mode
with n � 1 were found from Eq. (44). The calculations were conducted for the two fractions of
particles of a unit density dispersed in a water suspension and exposed to the IGW with o �
10ÿ1 sÿ1 �N � 10ÿ1 sÿ1): Rp � 100 mm �a010ÿ4� and 500 mm �a010ÿ3). The results are shown
in Fig. 1. It is seen that the shape of the particle trajectory essentially depends on the value of
a, i.e., on the particle size, see Eqs. (28) and (5). The ®gure also shows that the particle
migration from the repelling plane to the nearest attractive plane becomes more e�cient with
the increase in a: This e�ect is explained by the fact that the vertical drift velocity in the
waveguide is proportional to a (see Eq. (34)), whereas the horizontal velocity does not depend
on a at a� 1 (see Eq. (35)).

3.2. Computer simulation

The results presented above were obtained through analytical solution of nonlinear Eqs. (25)
and (26); this solution was found as a result of the approximation of the particle motion by
Eq. (29) at b� 1: In order to further explore the IGW-caused particle drift motion and
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evaluate the above approximations, the computer simulation of the IGW-caused particle
motion in the horizontal waveguide was performed.
The Cauchy problem that includes the nonlinear non-autonomic Eqs. (25) and (26) subjected

to the initial conditions, described as y � 0, x�0� � 0, Z�0� � p=4, x 0�0� � Z 0�0� � 0, was
numerically solved using the Runge-Kutta algorithm of the 4th order with the ®xed stepsize.
The following parameters were used: b � 10ÿ1; a � 10ÿ4; 10ÿ3; 10ÿ2; 10ÿ1; 1. The stepsize was
chosen through several iterations; the total absolute error was not to exceed 10ÿ6. To control
the accuracy of this numerical solution, some additional numerical simulations were performed
using the ®fth order Runge-Kutta algorithms with the Merson remainder term. The
computations started at Z � p=4 and were interrupted at Z � 10ÿ4:
The numerical simulation data obtained as the time-dependent functions, Z�y�, are shown in

Fig. 2. The results represent the superposition of the two components: the oscillation motion
and the drift motion of the particles in the ®eld of the IGW (the oscillation pattern is shown
on the ®gure). Fig. 2 demonstrates that the liquid get puri®ed with the time due to the particle
migration to the bottom of the waveguide (at n � 1). If n > 1, the two-component system
develops some speci®c structure as the particles concentrate near the attractive planes.
However, the vertical drift appears to be a very slow process, especially for relatively small

Fig. 1. Particle trajectories in the horizontal in®nite IGW waveguide (analytical calculation).
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particles �a� 1). For instance, the time needed for the entire puri®cation of the water
suspension with particles of 100±500 mm due to the IGW-caused vertical drift can be as long as
several days.
The data obtained numerically were averaged by eliminating the oscillation component and

then compared with the results obtained analytically in Eq. (39). The numerical and analytical
values agreed with each other very well: e.g., the di�erence in Z-values did not exceed 1% for
a � 1, b ranging from 0.01 to 0.1, and y > t�:

4. IGW-caused particle drift in two-dimensional rectangular resonator

4.1. Analytical model

Assuming that the liquid ®lls a two-dimensional rectangular resonator �L� h� with rigid
boundaries, the boundary conditions are

wjz�0 � wjz�h � 0; ujx�0 � ujx�L � 0: �46�
The IGW velocity ®eld in the resonator can be calculated using Eqs. (15)±(19) and (21) as

wnm�x, z, t� � C sin

�
pn
h
z

�
cos

�
pm
L

x

�
cos�onmt� �47�

and

Fig. 2. Particle verticle drift with the time in the horizontal in®nite IGW waveguide (numerical calculation).
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unm�x, z, t� � ÿC
�
L

h

n

m

�
cos

�
pn
h
z

�
sin

�
pm
L

x

�
cos�onmt� �48�

Here frequency onm is determined as

o2
nm � N 2 m2=L2

m2=L2 � n2=h2
; �49�

m, n � 1, 2, 3, . . .; C is an arbitrary constant. Eqs. (47) and (48) show that the IGW-mode in
the resonator represents the combination of the vertical and horizontal standing waves.
Substituting (47) and (48) in (4) and (3), respectively, and introducing the non-dimensional

variables

x � pm
L

x; Z � pn
h
z; y � onmt �50�

and parameters

a � omntp; b � Cpn
honm

, �51�

the equations of the particle motion in the rectangular IGW resonator are obtained as

aZ 00 � Z 0 � b sin Z cos x cos y �52�
and

ax 00 � x 0 � ÿb cos Z sin x cos y: �53�
Similarly to the solution found for the waveguide at b� 1, the equations for the particle drift
components in the rectangular resonator are

aZ 000 � Z 00 � ÿ
ab2

2�1� a2�sin Z0 cos Z0 �54�

and

ax 000 � x 00 � ÿ
ab2

2�1� a2�sin x0 cos x0: �55�

When conditions (32) and (33) are applied, the ®rst terms in the left-hand sides of Eqs. (54)
and (55) can be neglected. Thus, these equations can be transformed into

Z 00 � ÿ
ab2

2�1� a2�sin Z0 cos Z0 �56�

and

x 00 � ÿ
ab2

2�1� a2�sin x0 cos x0: �57�
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When

0Rx0Rp, 0RZ0Rp, �58�
Eqs. (56) and (57) possess the following equilibrium points:

�0; 0�, �0; p�, �p; p�, �p; 0�; �59�
�
p
2
;
p
2

�
; �60�

�
0;

p
2

�
,

�
p
2
; p
�
,

�
p;

p
2

�
,

�
p
2
; 0

�
: �61�

Eq. (59) represents the points of stability, i.e. the points-attractors; Eq. (60) represents the
point-repeller; Eq. (61) represents the saddle-like points.
Eqs. (56) and (57) represent the particle trajectory equations which after being integrated can

be expressed as

1� cos
ÿ
2Z0

�
1ÿ cos

ÿ
2Z0

� � C2
1� cos�2x0�
1ÿ cos�2x0�

, �62�

where C2 is an arbitrary constant. In particular, if 0RZ0�x0�Rp=2, Eq. (62) yields

Z0�x0� �
1

2
cosÿ1

26664
C2

1� cos�2x0�
1ÿ cos�2x0�

ÿ 1

C2
1� cos�2x0�
1ÿ cos�2x0�

� 1

37775: �63�

The particle drift trajectories calculated using Eq. (63) are shown in Fig. 3. The particle
migration from the repelling points (empty circles) to the attracting points (®lled circles) is
shown by arrows. The saddle-like points are marked with a cross. It is important to stress that
the shape of particle trajectories in the resonator is not a�ected by parameters a and b i.e. does
not depend on the particle size and IGW intensity. This conclusion is suggested by the fact
that the functions of the vertical and the horizontal drift components are identical with respect
to a and b (see Eqs. (54) and (55)).
The non-dimensional time scale t� was determined using Eqs. (56) and (57) and appeared to

be the same as described by Eq. (40), i.e. the mean drift velocity in the two-dimensional
resonator is proportional to the square of the particle size and to the IGW intensity. The
quantitative analysis shows that the IGW-caused structurization in the resonator is as slow as
the vertical drift process in the waveguide.
Thus, the IGW-caused particle drift can result in the two-dimensional structurization of the

two-component system (e.g., a hydrosol) in the resonator. The particle concentration increases
with the time in the vicinity of the attractive points and decreases near the repelling points (see
Fig. 3). It seems to be rather complex to provide an accurate analytical prediction of the
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particle behavior near the saddle-like points because of the non-autonomic nature of Eqs. (52)
and (53).

4.2. Computer simulation

When considering the standing IGW in the resonator, the particle motion near the saddle-
like points can be studied by a computer simulation. The particle motion is governed by basic
non-dimensional Eqs. (52) and (53). The numerical simulations were conducted at b � 10ÿ1

and a � 10ÿ3 and 10ÿ2. First, a single particle motion was simulated. Second, the ensemble of
1000 particles was studied.
The numerical solution of Eqs. (52) and (53), found at a � 10ÿ2 for a single particle initially

located in the vicinity of the repelling point �p=2; p=2), are presented in Fig. 4. The shape of
the numerically calculated trajectories represents the particle drift accompanied by their
oscillating motion (the curves in Fig. 4 are not smooth like those obtained analytically and
shown in Fig. 3). The arrows in Fig. 4 show that the particles migrate to the attractive points,
thus decreasing the particle concentration near the repelling points. The data presented in Fig. 4
were averaged in order to eliminate the oscillation component. Based on these ``averaged''
trajectories, it was concluded that the particle drift trajectories in the resonator described

Fig. 3. Particle trajectories in the rectangular IGW resonator (analytical calculation).
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respectively by the numerical and analytical solutions are quantitatively the same. This
conclusion was con®rmed when conducting calculations with a � 10ÿ3:
For the particle ensemble, the particle behavior was studied near the points of their

concentration, i.e., the attractive and saddle-like points. The calculations started at the initial
moment, y � 0, when the particles were assumed to be stochastically distributed inside the
region of 2p� 2p with x 0�0� � Z 0�0� � 0: The patterns that represent the six time points, y � 0,
2� 104, 5� 104, 105, 2� 105, and 4� 105, are shown in Fig. 5. It is shown that the structure
of a dispersed system changes with time, since the particles are concentrating at the attractive
points of the resonator. Some particles ®rst move to the saddle-like points (it is clearly seen at
y � 2� 105� and then ®nally join other particles in the attractive points (seen at y � 4� 105).
The computer simulation con®rms that the particle drift in the IGW ®eld generated in two-

dimensional resonator results in the particle structurization. The characteristic time of the
development of the structurization process appears to take a few days �y0104±105, see Fig. 5),
which agrees well with Eq. (40).

5. Method for acceleration of IGW-caused structurization

The results presented above show that in practical situations the vertical drift in the in®nite
horizontal waveguide and the two-dimensional drift in the resonator are very slow which
results in the rather slow structurization of the two-component system. This section introduces
the method for the signi®cant acceleration of the IGW-caused structurization, which utilizes

Fig. 4. Trajectories of a single particle initially located in the vicinity of the repelling point �p=2; p=2� in the
rectangular IGW resonator (numerical calculation).
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Fig. 5. Particle patterns in the rectangular IGW resonator at di�erent time points (numerical calculations).
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the horizontal component of the particle drift motion in the in®nite waveguide. The horizontal
drift velocity component may be relatively high, as assessed by Eqs. (43) and (27). The particles
in the in®nite waveguide follow the curved trajectories so that some of them move in the wake
of the wave and some do in the opposite direction (see Fig. 1). When the waveguide is semi-
in®nite (the IGW radiator represents the ``vertical boundary''), some particles move toward the
radiator and deposit on its surface while other particles move away from the radiator thus
purifying certain areas. This is schematically displayed in Fig. 6 which represents the case n �
1: The particle concentration decreases in the regions marked by symbol ``1'' (near the
waveguide horizontal boundaries), whereas their concentration increases in the region marked
as ``2'' (the waveguide center). The particle concentration remains essentially the same in the
intermediate region ``3''. In the general case �nr1), the layers of a puri®ed ¯uid (total of n� 1�
will alternate with the layers loaded with particles (total of n ).
Eq. (45) suggests that the lower is a (i.e. the particles size), the greater is the width of the

``clean'' regions. The velocity of particles moving in region ``1'' away from the radiator is
determined primarily by the horizontal component of the drift and can be obtained using Eq.
(43). If a� 1, the horizontal drift velocity is estimated as

ud � on

k
x 000

on

k

b2

2
�64�

For soft isothermal water (see Lighthill, 1978)

on0N010ÿ3 sÿ1: �65�

Assuming b � 0:1 and of lx0105 cm, the drift velocity is in the order of

ud01 cm=s: �66�

Fig. 6. Particle horizontal drift in the semi-in®nite IGW waveguide (schematics).

S.A. Grinshpun et al. / International Journal of Multiphase Flow 26 (2000) 1305±1324 1321



It is remarkable that this value does not depend on the particle size and is determined only by
the IGW parameters. The energy needed to purify the volume of 1 cm3 can be evaluated as

e0r0u
2
n ug

ud

, �67�

where un and ud are de®ned by Eqs. (23) and (64), respectively; ug is the horizontal component
of the IGW group velocity. If the waveguide height is h010 m, we estimate kz0p=h010ÿ3

cm, i.e., kz � kx0p=lx: Utilizing the standard equation for the group velocity (Lighthill,
1978), we obtain

ug0
N

kz
, �68�

Using the above indicated assumptions, we estimate that e010ÿ5 J/cm3 = 10 J/m3, which
appears to be a very low energy consumption due to the low group velocity value: ug01 cm/s,
see Eq. (68).
It is concluded that the semi-in®nite waveguide allows us to signi®cantly increase the

structurization rate using relatively small energy resources. In addition, the model of the semi-
in®nite waveguide with the IGW radiator as a vertical boundary seems to be more realistic
than the in®nite waveguide model, since in the former one the radiator may e�ectively serve
for the IGW excitation.

6. Discussion and conclusions

Internal gravity waves have much lower frequency and smaller group velocity compared to
acoustic waves. Similarly to acoustic waves, IGWs generate the particle drift in a two-
component system.
The analytical and numerical calculations of the IGW-caused particle drift were performed

for the following two situations (i) the propagating IGW in the horizontal in®nite waveguide
and (ii) the standing IGW in the rectangular resonator. The particle trajectories in the IGW
horizontal waveguide were found to be more complicated than those generated by an acoustic
waveguide. Indeed, IGW causes the transverse strati®cating drift accompanied by the
longitudinal drift, while in the acoustic waveguide the particles migrate in the wake of the wave
(King, 1934; Redcoborody, 1995). The standing IGW and the acoustic wave in the rectangular
resonator feature similar particle drift characteristics.
The data on the particle drift in low-frequency standing IGW obtained in this study show a

good qualitative agreement with the results obtained by Dain et al. (1995) for the particles in a
two-dimensional high-frequency sonic ®eld. One example of this similarity is the emergence of
knots (attractive and repelling points) and saddle-like points. For the domain considered in the
paper by Dain et al. (1995), there exists an additional side drift along the nodes and antinodes.
It should be noted that both the low-frequency waves (such as IGW) and the high-frequency
sonic waves may be utilized for cleaning suspensions from the particles.
As a result of the particle migration in the IGW ®eld, the particles concentrate in the certain
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areas of the ®eld. The particle size was found to a�ect the shape of particle trajectories and the
drift velocity in the in®nite waveguide. In contrast, the shape of trajectories in the IGW
rectangular resonator was found independent on the particle size and IGW intensity.
The IGW-caused particle drift may result in the partial puri®cation of a two-component

system associated with its structurization. The latter is characterized by the formation of
alternating areas of the ¯uid: an entirely puri®ed layer (does not contain any particles)
alternates with a layer loaded with particles. These e�ects require a relatively low energy, about
10 J�m3 (much lower than that of the acoustic wave).
The particle migration for the two above indicated situations was found to be a very slow

process and, therefore, the time needed for an e�cient puri®cation (or structurization) of a
¯uid is rather long and increases quickly with the decrease in particle size. However, the
particle coagulation (not considered in this study) may signi®cantly reduce the actual time of
this process. The oscillating and drift motion favors coagulation so that this e�ect may be
pronounced even if the initial particle concentration is relatively low. The e�ect of a on the
particle drift rate, or in other words its particle size dependence, suggests that this phenomenon
is similar to the so-called gravity coagulation (Khrgian, 1986), which is extremely e�cient in
warm atmospheric clouds at low aerosol concentrations. In addition, the e�ect of a on the
amplitude of oscillation also promotes the particle coagulation.
Even if the role of the particle coagulation is neglected, the partial puri®cation of a two-

component system can still be signi®cantly accelerated through utilizing the horizontal
component of the particle drift in the semi-in®nite IGW waveguide described in Section 5. In
this model, the liquid fully puri®es from particles near the radiator, and the area of puri®cation
expands along the waveguide with the velocity of the order of 1 cm/s (in the absence of
convection).
While the IGW ®eld was found to generate a considerable strati®cation, this strati®cation

may be potentially reduced by the Brownian di�usion. Therefore, we assessed the Brownian
di�usion e�ect as described below. The coe�cient of Brownian di�usion, D, was determined by
the well-known Einstein's expression (Huang, 1963):

D � kbT

6prnRp

, �69�

where kb and T are the Boltzman constant and the temperature, respectively. The characteristic
time td of the particle di�usion motion to the distance S was estimated as

td � S 2

D
� S 26prn

kbT
Rp: �70�

The characteristic time t� of strati®cation under IGW was determined from Eq. (40) as

t�0
1

ab2
� 9rn

2o2rpb
2

1

R2
p

: �71�

Thus, td increases with the increase of Rp while t� decreases at the same time. Assuming that
o00:1 sÿ1, b00:1, S010 m, we conclude that the equality of td � t� may occur in water if
the size of suspended particles is Rp00:1 mm. For the larger particles, td > t�: This estimation
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shows the Brownian di�usion is insigni®cant, at least, for the space scales of S > 10 m. Also,
the Brownian di�usion cannot make the strati®cation quickly disappeared with time once the
wave ®eld is shut down: for the above indicated conditions, the IGW-generated strati®cation
may essentially dissipate in about 106 years.
The IGW-caused particle drift may play a signi®cance role in many natural processes

occurring in large water reservoirs with low convection and thus may be of interest for
atmospheric and oceanic research.
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